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LETTER TO THE EDITOR 

Kadanoff renormalisation for the s -state Potts model in three 
dimensions 

B W Southern 
Institut Laue Langevin, BP 156 X, 38042 Grenoble, Cedex, France 

Received 10 October 1977 

Abstract. A lower bound transformation of the type introduced by Kadanoff is applied to 
the discrete s-state Potts model in d = 3 dimensions. For all values of s = 2, 3,4,  5, 6 the 
transformation predicts a continuous transition. 

The discrete s-state Potts model (Potts 1952) has the Hamiltonian 

where i denotes a lattice site and where the spins ui can take s discrete values 
ai = 1,2, .  . . , S. The index a runs over these s states and ta represents a symmetry 
breaking field favouring the state a. The interaction energy between nearest-neigh- 
bour pairs is -J if they are in the same state and zero otherwise in contrast to a 
general spin Ising model. However s = 2 obviously corresponds to the spin-4 king 
model. 

The s-state Potts model has s degenerate ferromagnetic ( J > O )  ground states in 
the absence of any fields. Landau mean-field theory (Mittag and Stephen 1971) 
predicts a first-order transition in all dimensions for S > 2 ,  essentially due to the 
presence of a coupling trilinear in the magnetisation. Baxter (1973) has shown that 
the discrete s-state Potts model on a d = 2 square lattice has a first-order transition for 
s > 4 and a higher-order transition for s S 4. However, the critical behaviour of the 
s-state Potts model in three dimensions has been the subject of much dispute. Since 
s = 4 is the dividing point between second- and first-order transitions in two dimen- 
sions and mean-field theory is thought to be more meaningful in higher dimensions, 
one might expect that the dividing point in three dimensions is somewhere between 
s = 2  and s =4.  

Series expansions for the discrete three-state Potts model in three dimensions have 
not been very conclusive about the order of the transition (Ditzian and Oitmaa 1974, 
Straley 1974, Enting 1974, Kim and Joseph 1975). Renormalisation group studies 
using a continuum generalisation of the s = 3 Potts model at d = 3 (Golner 1973) and 
in d = 4 - E  dimensions (Rudnick 1975) predict a first-order transition, but real space 
renormalisation group calculations on the discrete three-state Potts model suggest a 
second-order transition (Burkhardt et a1 1976). The discrepancy between these 
results raises the question of whether there is a basic difference between the 
continuous and discrete Potts models. Experimentally, there are realisations of the 
continuous three-state Potts model (Aharony et u1 1977, Barbara et a1 1977) and in 
both cases a first-order transition is observed. 
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Real space renormalisation group methods have been applied to the d = 2 s-state 
Potts model by Dasgupta (1977) and den Nijs and Knops (1977). These authors used 
a lower bound renormalisation transformation (LBRT) of the type developed by 
Kadanoff (1975). For s = 3  and s=4, the transformation correctly predicts a 
continuous phase transition. However the transformation fails to detect the first- 
order transition that is known to occur for s > 4. One possible reason for this failure is 
that the basic cluster of spins in d = 2 is too small. A cluster containing four sites 
cannot properly represent an interaction energy involving five or more different states. 
For this reason we shall consider the discrete s-state Pot& model in three dimensions 
on a cubic lattice where the basic cluster contains eight sites. In this case we should be 
able to examine the model for values of s up to eight before encountering the 
difficulties of the finite cluster size and test the Kadanoff method to see if it predicts a 
first-order transition for some value of s in this range. 

The Hamiltonian is written in the form 

where the set S l ( a )  includes all possible invariants which satisfy the point group 
symmetry of the cube (see Dasgupta 1977 for examples of the corresponding in- 
variants on a square). Following Kadanoff (1975) we shall work in an invariant 
subspace of the constants KI for which %(a) is symmetric under a permutation of spin 
positions. This invariant subspace can be reached from the initial Hamiltonian in 
equation (1) by first performing an exact decimation transformation (Kadanoff and 
Houghton 1975) on a BCC lattice. In the absence of a field all s-states are equivalent 
and there are 22 different invariants S&) for the cube. However for values of s < 8, 
not all of these interactions are linearly independent. The number of independent 
invariants for each value of s is given in table 1. In real space renormalisation 
transformations a first-order transition is associated with a discontinuity fixed point 
(Nienhuis and Nauenberg 1975) with a magnetic exponent y = d  for each 
eigenoperator conjugate to a discontinuous order parameter. In addition, a thermal 
exponent y = d would imply a = 1 and hence a latent heat at the transition. 

We have applied the Kadanoff LBRT within the restricted subspace of interactions 
described above and the results for s = 2,3,4,5,6 are given in table 1. The results for 
s = 2 and s = 3 have been obtained previously by Kadanoff (1975) and Burkhardt et a1 
(1976) respectively but those for s = 4, 5, 6 are new. From the table it is easily seen 
that y < d for both the thermal and magnetic exponents in all cases and the transition 
is predicted to be continuous rather than first order. We have not been able to 

TaMe 1. s-state Potts model in d = 3. Critical exponents obtained using LBRT. ne and no 
are the number of independent invariants of even and odd symmetry respectively. P* is 
the value of the variational parameter obtained using the Kadanoff criterion and J/T,  is 
the corresponding critical temperature. 

S ne no YT YH (1 s P* J/  Tc 

2 5 4 1-5898 2.4646 0.1130 4.6037 0.8069 0.324 
3 10 15 2.0709 2.5107 0.5514 5.1308 0.9055 0.401 
4 15 26 2.3524 2.6124 0.7247 6.7399 0.9469 0.459 
5 18 35 2.5055 2.6927 0.8026 8.7628 0.9803 0.505 
6 20 40 2.5992 0.8458 1.0115 0.543 
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complete the table with the magnetic exponents for s = 6, 7, 8 and the thermal 
exponents for s = 7,8 due to the amounts of computational time required to generate 
the weight function describing the coupling of the ‘old’ spins to the ‘new’ spins in the 
LBRT. However a plot of the leading exponents as a function of s does not show any 
indication that y will approach 3 for s < 8. 

The reasons why the Kadanoff LBRT does not predict a first-order transition for 
some value of s <8 are not clear. The criterion proposed by Kadanoff (1975) for 
selecting the ‘best’ fixed point out of the set allowed by the approximate recursion 
relations has been recently examined by Knops (1977) and Barber (1977). A true 
minimisation of the free energy requires the variational parameter p to be adjusted at 
each iteration of the LBRT and hence a calculation of p as a function of the coupling 
constants Kl at each iteration. The optimum bound to the exact free energy thus 
involves a multi-dimensional optimisation over many parameters, one for each itera- 
tion, and evaluation of the exponents requires a calculation of dp/dKl. However it is 
doubtful that such a true optimisation calculation would improve the results reported 
here since it has been recently suggested by van Leeuwen (private communication 
from M Barber) that p(Kl) may contain an irregular part with an exponent 1-a, 
leading to a divergent dp/dKl when a > 0. One possible explanation for the failure of 
the Kadanoff method is that the change from continuous behaviour to first-order 
behaviour at the transition is associated with the appearance of a fixed point where the 
interactions are of infinite range. Perhaps the effective range of interaction changes as 
s is increased from two. Above some critical value of s the range may become 
essentially infinite and mean-field theory would presumably be correct for values of s 
above this critical value. If this suggestion is correct then the present finite cluster 
calculation would not detect such a change in behaviour. 

The author would like to thank Dr T W Burkhardt for many stimulating discussions 
and the use of the variational computer programs, and Dr M P M den Nijs for sending 
a preprint of his work prior to publication. A useful conversation with Dr A P Young 
is also acknowledged. 
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